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Abstract—The paper focuses on the micromechanical origins and mechanisms of creep failure of
epoxy-resins. Microstructure of the material is modeled by a 2D lattice. The probabilistic nature of
the creep deformation process is based on the kinetic theory of rupture. The macroscopic mani-
festation of the process: evolution of strain, degradation of stiffness and endurance are defined in
terms of the morphology of the microstructure and processes at the microlevel. (¢ 1997 Elsevier
Science Ltd. All rights reserved.

1. INTRODUCTION

A material subjected to stress levels which are well below its mechanical strength and high
temperatures undergoes a time dependent deformation known as creep. The time to creep
rupture is found to be proportional to the stress sign and magnitude, temperature and
microstructure. The inquiry into the process of creep rupture has been motivated, in the
last few decades, by the needs of the power generation industry, design of more powerful
engines and turbines for aircrafts and automobiles, etc.. A variety of empirical, phenom-
enological (Hult, 1966, Rabotnov, 1969) and micromechanical (Riedel, 1987, Cocks and
Leckie, 1987) models have been proposed in the past to predict the type of response and
the time to creep failure as a function of temperature and applied stress (which is typically
assumed to be constant for the duration of the deformation process). Most of these models
are deterministic and based on the premise that the influence of the temperature can be
introduced through the constitutive properties. A different viewpoint was taken by the
material scientists and physicists (Regel’ er al., 1974, Poirier, 1985) who treat the tem-
perature as a basic stimulus which enhances the mobility of atoms and increases the
probability of dislocation motion and rupture of atomic bonds in the material. The com-
petition between the rate of dislocation motion and the rate of the bond rupture determines
the degree of brittleness in a particular material under specific circumstances.

Thermoset polymers are increasingly used in engineering applications. The relative
ease of manufacturing light-weight components of complex shapes and the wide range
of available physical properties makes these materials very attractive for industrial use.
Thermoset resins are often employed in neat form, but find their principle application as
matrix materials for composites. A high degree of cross-linking provides thermosets with
rigidity and causes them to behave in a brittle manner. The brittle behavior remains at
elevated temperatures, when the principle mechanism of deformation is microcracking.
These issues motivate the high temperature application of thermosetting polymers, ren-
dering creep rupture analysis especially important.

The objective of this study is to consider the creep deformation as being a thermally
activated process and take into consideration the stochastic nature of thermal fluctuations
and properties of the microstructure. The study is focused on the brittle deformation of
thermoset polymers which is attributable to the sequential rupture of molecular chains.
The microstructural morphology of epoxy resins (Mijovic and Tsay, 1981) emphasizes
dense nodules interconnected by lower density material formed by crosslinked polymer
chains and can be modeled by a central-force lattice (three dimensional truss—see Krajci-
novic and Mallick, 1994, 1995). All lattice properties can be determined from the atomic
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and molecular properties of the resin. However, since the inter-nodular distance is very
small (x0.5x107* m) a model of a typical engineering specimen would require a lattice
with far too many elements to be useful in application. Hence, it is important to explore
the effect of the lattice size on the macro response and time to rupture.

In addition to the lattice model which can account for the interaction of defects and
the effects of stress concentration, the study also formulates a mean field model, and
examines the validity of the first order effective medium approximations.

2. ANALYTICAL MODEL AND THE KINETIC CRITERIA OF RUPTURE

The analysis focuses on a prismatic specimen subjected to the uniform tensile stresses
of constant magnitude and temperature close to the glass transition temperature 7, of a
thermoset. The specimen is, for the case of plane strain condition, approximated by a two-
dimensional, triangular central-force lattice of perfect geometry (Fig. 1.a). The nearest
neighbor nodes are connected by the links of identical stiffness &, identical strength £,
identical length / and identical activation energy U,. The force-displacement relation of the
link is linear up to failure. The spring stiffness & is related to the elastic modulus E of the
resin by the relation & = (8/ 5\/§)E per unit thickness (Monette and Anderson, 1994). The
Poisson’s ratio of the lattice v = 1/3 is independent of the spring stiffness £. However, the
strength in two directions is not the same (Monette and Anderson, 1994).

The morphology of epoxy lattices is neither topologically nor geometrically perfect. it
is also not two-dimensional. However, the primary objective of this study is to establish
micromechanically based relations for the evolution of the strain and damage in time. In
view of the assumptions used to simplify the morphology of the resin microstructure the
presented results are qualitative in nature. More specifically, in the case of temperature
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Fig. 1. (a) A two-dimensional triangular lattice configuration used in simulations (b) schematic
showing the random process of link rupture. The individual probabilities of the failure of links are

represented as flights of the staircase. Link & is ruptured when the random number x,,, exceeds the
cumulative height of the k' staircase.



Creep rupture of polymers 1107

driven damage evolution the assumption of perfect geometry should not have any effect on
the corresponding mode of failure (clastic percolation) since the percolation threshold
depends entirely on the topology (coordination factor) of the lattice. However, the same
approximation can have a quantitative effect on the accuracy of the result if the damage
evolution is driven by stresses (induced by mechanical load) which depend on the geometry.

The stochastic nature of the problem is introduced through the kinetic rupture criterion
based on the absolute reaction-rate theory of Eyring (1936). Within the framework of the
reaction-rate theory the bonds (links) of a lattice are viewed ‘‘as coupled oscillators in a
state of thermal vibration™ (Termonia et al., 1985). The bond rupture is treated as a random
process which is activated by the spatially and temporally random thermal fluctuations.
The probability that the i-th link will rupture during the time interval Az is proportional to
the rate of the link rupture R, (Krajcinovic and Mallick, 1994, 1995)

, ! U(f) 1 Uy—®,(1) ,
t = ; = — p— = gp— - 1
Dy = RAt e exp( %) >At . exp( T )AI (H

where U(f)) is the apparent activation energy. U, = 2 x 107" J is the activation energy of
an unstressed bond or the height of the energy barrier in the stress-free state, t, = 107" s
the mean period of atomic thermal vibrations, k, = 1.381 x 10~ J/molK (Boltzmann’s
constant) and T the absolute temperature in degrees Kelvin. The term ®(r) = ®sign(f) is
related to the elastic energy stored in the i-th link ®(r) = f7/2k, where the link force fi(1)
depends on the state of the lattice. The effect of the elastic energy ®,() on the energy barrier
is taken with a positive sign when the force in the link is tensile and with a negative sign
when the force is compressive. In crystals the constant U, “fits well to the energy of
sublimations. . ..(and) . ..is equal to the binding energy of atoms™ (Zurkov, 1965). Similar
conclusions can be reached by consulting voluminous data for metals, glasses and polymers
of Regel’ et al., (1974).

On the atomic scale (Bueche, 1955, and Regel’ er al., 1974, Ch. 111.2) the activation
energy is equal to U(f) = U,— ®(f;) where ®(f)) is the clastic energy stored within the link.
On the macroscopic scale the activation energy for thermoplastics is often written as a
linear function of force as U(f) = U,—yf; where v is the activation volume (Termonia et
al., 1985). Indeed, Termonia er al. (1985) preferred the latter expression on the basis of a
better fit for the case of polyethylene fibers. However, the scatter in measurements for the
activation volume (0.7-3.0 for zinc, 2.0-9.0 for aluminum, 0.29-0.43 kcal mm?*/mole kg for
capron—Table 1I in Ch. IL.9 from Regel’ er al., 1974) does not render the best fit criterion
entirely convincing. For example, Krausz and Krausz (1988) use the energy release rate for
®( f;) for the propagation of the macroscopic crack.

One of the reasons for the disagreement in selection of the parameter ®(f) is the
entropic nature of the elasticity of a polymer chain (Mears, 1965), i.e. a chain can be
stretched by changing its conformation without any storage of energy. However, the nodules
(aggregates) in a thermoset are interconnected by a network of crosslinked polymer chains.
The stiffness of a crosslinked network depends on the number of polymer chains, distance
between the aggregates and temperature. Furthermore, the elasticity of a crosslinked net-
work in thermosets is dominated by the energy stored in the links rather than conformation,
since, in the limit of small strains (Perepechko, 1981) the force in the link (network) is
linearly proportional to the link elongation. In summary, since the objective of this work
is to examine the creep deformation of a thermoset polymer (modeled by a system of
aggregates linked together by crosslinked networks) it seems that the parameter ®(f;)
should be, on observed scale, selected in form of the elastic energy stored in the network
(as suggested originally by Bueche, 1959).

The link failure probabilities (1) are constant as long as the link forces f; remain
constant. Hence the time interval must be selected such that only a single link ruptures as
t = 1+ At. Thus, the average time needed for the rupture of a link is from (1) equal to
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The summation in (2) extends over all extant links N(r).

The exact sequence of link ruptures is determined by the Monte Carlo lottery (Dob-
rodumov and El'yashevich, 1973, Termonia er a/., 1985, 1987, 1988, 1989). At each time
interval (2) the forces in each link are determined by using simple algorithms for the elastic
central-force lattices (trusses). The probabilities (1) are computed and arranged into the
cumulant function shown in Fig. 1.b. The link that will rupture during the time period
(t,t4+A) is identified by the point in which a horizontal line drawn from the randomly
selected point on the ordinate intersects the cumulant function. The lattice elongation,
current stiffness and the fraction of ruptured bonds is computed and recorded at each time
interval. The computations are terminated when an infinite (spanning) cluster of defects
emerges and reduces the lattice stiffness to zero.

The relative effects of temperature and stress on final rupture are reflected in the
link rupture probabilities (1). At relatively large stresses the apparent activation energy
U(f) = U,—®(1) of the links near the defect (stress concentrations near ruptured bonds)
are much lower than the activation energy of links far away from the defect. Hence, the
probability that the links near the defect will fail first is substantial. As the defect (cluster
of ruptured links) grows so does the probability that the link at its tip will rupture next.
The specimen rupture is in this case of the brittle (cleavage) mode which emphasizes
propagation of a single crack. At very small tractions the apparent activation energies U(f;)
and rupture probabilities (1) are almost identical for all links. As a result the damage will
be randomly distributed over the entire lattice. The failure of the specimen will in this case
occur at a substantial damage density distributed over the entire specimen volume.

3. LATTICE SIMULATIONS—RESULTS

The model which is considered consists of 4 x 4 two-dimensional triangular network
of springs (Fig. 1.a). The non-dimensional lattice size is related to the actual geometrical
lattice size by the relationship 2 = L/! where ! is the link length. The link size / is also
the resolution length of the model which coincides with the characteristic length of the
microstructure (the inter-nodular distance). The boundary conditions of the lattice are
prescribed as follows. The bottom row of the lattice is fixed. The top row of nodes is
subjected to a uniform tensile stress o = const. In the lateral direction, periodic boundary
conditions are imposed to avoid shape effects. Simulations are performed over many
physical realizations, for different lattice sizes and different magnitudes of applied stress.
The average temperature T = 0.757, is kept constant for all simulations.

The kinematics of lattice deformation is defined by the lattice elongation and a damage
parameter. For example, the fraction of ruptured links or the reduction of the lattice
stiffness (Hansen et al., 1989, Krajcinovic and Basista, 1991, etc.) can be selected to measure
the damage on the scale of the lattice. The most important parameter for design is the time
of rupture which may or may not depend on the accumulated damage, lattice size, stress
concentrations, defect size distribution, etc.

3.1. Fraction of ruptured bonds at creep failure

On the atomic scale, damage is defined by the probability that a particular bond is
broken. On the macroscopic scale the damage can be measured only indirectly by the effect
it has on the macro response of the specimen (Krajcinovic and Mastilovic, 1995). The most
important aspect of damage modeling is to single out the damage measure which is readily
identifiable, measurable in tests, robust with respect to the details of experimental obser-
vations and independent of the specimen size. The first task is to establish the relationship
between the fraction of ruptured bonds and the effective (lattice) stiffness. Since the hori-
zontal bonds do not contribute to the stiffness of the lattice in the direction of the applied
loads only the fraction of the ruptured diagonals are of interest.
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Fig. 2. The number of ruptured diagonals n} at system failure vs lattice size / for various xz. The
slopes 7 of the straight lines for x = 0.001, 0.005, 0.01. and 0.03 are 1.88. 1.80. 1.61, and 1.40.
respectively.

The simulations performed in this study (Fig. 2) indicate that the fraction of the broken
diagonals at failure scales with the specimen size / as

/
ny
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!/ —
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where n} is the number of ruptured diagonals at lattice failure, and N, = 2, the initial
number of diagonals.
The ratio

2,00) D,
am =l )
defines the fractional reduction of the activation energy which is attributable to the exter-
nally applied mechanical loads. The subscript *“0”” denotes reference to the pristine (undam-
aged) state and C, the axial stiffness of the undamaged lattice.

The dependence of the scaling exponent on the load parameter « is displayed on Fig.
2. At minuscule load intensities, i.e., as a« — 0" the scaling exponent y — 2~ since the
geometry of the diluted lattice is self-similar at the percolation threshold. In the absence of
mechanical stresses the bond rupture sequence is perfectly random and the damage evolves
by defect nucleation only. A randomly diluted lattice fails in the percolation mode after
accumulation of a substantial density of distributed damage. As the load parameter « is
increased the exponent y in the expression (3) tends to unity. This is also consistent with
the fact that the failure at large stresses occurs when a single crack, formed by 24 ruptured
diagonals, traverses the specimen. The absence of distributed damage minimizes the speci-
men fracture energy. A similar scaling behaviour was reported by Hansen er al., (1990),
and Curtin and Scher (1991), for a different link rupture criterion.
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The density of ruptured bonds at failure is size independent only when the lattice
dilution is perfectly random, i.e., when o — 0*. In all other cases the damage density at the
lattice failure decreases with the increase of the specimen size.

3.2. Lattice stiffness

The total number and density of ruptured links (i.e., damage in the specimen) are
dependent on the specimen size 4 (Fig. 2). Hence, neither the total number of ruptured
bonds nor the density provide a viable measure of damage at failure. The next task is to
ascertain whether the lattice stiffness is size independent.

A random dilution of stress-free central-force lattices (« = 0) has been studied within
the framework of the percolation theory by many authors (Feng and Sen, 1984, Lemieux
et al., 1985, Sahimi and Goddard, 1986, Beale and Srolovitz, 1988, etc.). The mean field
estimate of the lattice stiffness is

C _p—p. _zp—4
Co l1—p. =z—4

(%)

where p is the fraction of surviving links at time ¢, p, the critical fraction of surviving links
at the percolation threshold, and z the coordination number (number of bonds intersecting
at a node). The mean field estimate of the critical fraction of surviving links in a triangular
lattice (z = 6) at the percolation threshold (C = 0) is, from (35), p. = 2/3. This result is
within numerical scatter equal to the value p, ~ 0.63 determined by the simulations of Beale
and Srolovitz (1988) and very close to the value determined experimentally by Sieradzki
and Li (1986). As shown by Feng and Sen (1984) and Beale and Srolovitz (1988) the
linear dependence of the lattice stiffness on the number of ruptured bonds persists over a
surprisingly large range (1 > C/Cy, = 0.1),

The computer simulations performed in this study demonstrate identical trends for the
small values of the load parameter « (Fig. 3). The dependence of the lattice stiffness on the
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Fig. 3. Reduction of the lattice stiffness C/C,, vs fraction of broken diagonals g, in the course of
simulation for « = 0.001 (right set of curves) and x = 0.03 (left set of curves) and different lattice
sizes. The straight line C/Cy = | —q./q., (g. = 0.3473), represent the percolation type process (« = 0).
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fraction of ruptured diagonals is displayed in Fig. 3 taking « and lattice size 4 as parameters.
The cross-over from the thermally activated, defect nucleation dominated damage evolution
process (o —0%), to stress driven, defect growth dominated damage accumulation
(x = 0.03), is apparent from the two sets of curves in Fig. 3. A rapid loss of lattice stiffness
at modest accumulation of damage is typical of the stress driven propagation of defects.
Failure takes place at an almost imperceptible loss of stiffness C/C, = 0.95. Lattice failure
of a thermally activated and driven process of defect nucleation occurs at large defect
density and after an observable loss of stiffness. The briitle character of the failure is
amplified when the lattice size is increased.

3.3. Evolution of the strain with time

Phenomenologically, creep deformation is often divided into three phases (Fig. 4). The
strain rate during the first or primary creep phase is very high. The deformation is at small
stress levels, for all practical purposes, elastic and instantaneous. The strain rate during the
secondary phase is practically constant. The loss of stiffness is, therefore, a linear function
of time. By inference, the damage evolution during the secondary (stationary) phase. is
attributable primarily to the nucleation of defects which are scattered over the entire volume
of the specimen. The specimen microstructure is statistically homogeneous (Fig. 5.a) and
the response is of the mean field type. As long as the probabilities of the interaction of
neighboring defects is small, the probabilities of link rupture (1) are practically identical.
Stress concentrations play a modest role in the damage evolution process. The effect of the
stress concentrations on the stiffness and the response becomes more pronounced as the
defect density increases. The probability of interaction of closely spaced defects increases
leading to the formation of a large defect. The formation and propagation of large cracks
or defect clusters in the tertiary creep phase have a dramatic effect on the rate of the stiffness
degradation and the increase of the strain rate. The rupture probabilities of links near the
tip of a large crack are so large that the process of nucleation crosses over to the process
dominated by the growth of a single crack (Figs 5a-d). The ensuing damage evolution is
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Fig. 4. Evolution of creep strain & with time for different lattice sizes and two values of the load
parameter: o = 0.001--right set of curves and « = 0.01-—left set of curves).
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a) t=33.26 hrs, C/C0=0.96 b) : t=36.58 hrs, C/Co=0.92

c) 1=36.58 hrs, C/C0=0.40 d) 1=36.58 hrs, C/Co=0.01

Fig. 5. Successive lattice (4 = 64) configurations (a-d) during the course of a simulation for the
load parameter « = 0.03. Indicated are the corresponding times and reduction of stiffness.

dominated by stress concentration driven defect growth. The smooth transition between
successive phases is referred to as the cross-over regime during which the balance between
the competing mechanisms of damage evolution changes. This part of the process, char-
acterized by the gradual increase in strain rate and modest size dependence, reflects the
growing effect of the cooperative (or defect interaction) phenomena. For large values of
the load parameter «, this phase of the process is very short (Fig. 4), and the process of the
defect nucleation is directly followed by the process of single crack propagation (Curtin
and Scher, 1991).

A variety of phenomenological creep models, based on different rheological models
and different relations between stresses and strain rates, are available in the literature (Hult,
1966, Rabotnov, 1974, etc.). According to the Tobolsky and Eyring (1943) model, which
is compatible with the simulations presented here, the strain is related to the elapsed time ¢
by

e=A,—A,In(t,—1) (6)

where ¢, is time to rupture. Constants 4, and 4, can be determined in terms of observable
and measurable parameters from

g(z)|,:0=f3i—’) 1 oand ¥ (7)

(4 =0

where ¢, is the instantaneous, elastic strain and w a parameter which depends on the material
microstructure and the temperature.
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In the case of brittle deformation the nonlinearity of the stress-strain relations can be
traced to the degradation of the stiffness, i.e., to the accumulated damage (Kachanov,
1958). Hence, the normalized strain is

1
1—-D(1)

& = ®)

where the damage parameter

Co—C(t)

Dty ="

&)

is defined as the fractional loss of lattice stiffness (Krajcinovic and Basista, 1991). At very
small damage densities (early phase of the deformation process) the damage accumulation
is a linear function of the ruptured bonds (Fig. 3), i.e., D(?) = ¢(¢)/g., where ¢ = 1 —p and
g.=1—p,=0.3473 is the fraction of missing links at the rigidity elastic percolation thr-
eshold for a central-force triangular lattice (Stauffer and Aharony, 1992). The cor-
responding strain rate is

dg 1 —2d
) _ _<1 _ q) dg (10)
dr|_e+ 4. g.) dtj,_,.
The rate at which the bonds rupture is, from (1) and (2),
dg 1301 Uy — (1)
1 Uy —exp( — =) 11
dt - NE < kT an
Hence,
dg 1 Up(1 —2)
M A =0. 12
o exp|: kT attr=10 (12)
The approximate expressions for the strain and the stiffness are then
Up(1—2) Iy
(4 = — - 13
=1+ - exp[ kT ]t, In Py (13)
and
C(1) 1 Uy(1—2) A
=J1 — 1 . 14
Cy { * q.l exp|: k, T g ntt'—t (14

The results of the numerical simulations are compared to the approximate expressions (13)
and (14) in Fig. 6 for the load parameter o« = 0.01 and five different lattices sizes 4. In view
of the random character of the deformation process, the accuracy with which (13) and (14)
fit the simulation data is remarkable.

It is important to notice that the proposed model includes only a single parameter ¢,.
Hence, the accuracy of the model depends on the accuracy of the estimate of ¢, Moreover,
the response and the effective stiffness are size independent if and only if ¢ is size inde-
pendent.
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Fig. 6. Comparison between the simulation (a and ¢) and analytical (b and d) results for evolution
of creep strain £ with time and reduction of the specimen stiffness C/C, with time. Load parameter
o =0.01.

3.4. Time to creep failure

The time to creep failure is the most important parameter, which depends on the
constitutive properties (through the parameters Uy, 1), topology of the microstructure
(through the percolation threshold p, = 1—¢,), specimen size 4, temperature T and the
applied loads (load parameter ). The rupture is defined as a state at which the lattice
stiffness C vanishes, i.c., by C(¢) = 0 as ¢ — ¢, The time to failure is determined from the
computer simulations as

Il/

zﬁ=;Au (15)

where n,is the number of ruptured bonds at lattice failure while A¢, is defined by (2).
The simulation results, plotted in Fig. 7, indicate the exponential dependence of the
time to rupture on the applied tensile stresses

Int, = c—a(A)y/= (16)

which is in agreement with the experimentally observed trends (Regel’ et al., 1974).
The parameter ¢ defines the time of rupture of a stress-free specimen. For @ = 0, it
follows from (2) that
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Fig. 7. Variation of the time to failure 7, with load parameter « for different lattice sizes.
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where g N is the number of ruptured links at the percolation threshold. The expression for
the time to rupture can be rewritten as

L= ln<T17>to exp(U )exp a(/)f] (18)

the parameter a(4) was evaluated from the simulations and Fig. 8 as
\ 1
a(d) = 27.59—69,60;. (19)

The dependence of the time to creep rupture on the specimen size, defined by (18), is
displayed in Fig. 9. Since the internodular distance (links length) in polymers is only
[ = 0.5x 10~® m the specimen size influences the time to creep rupture only in very small
specimens. For example, if « = 0.03 the time to rupture will be size dependent only for
specimens shorter than L < 100 / = 0.5 um. The size dependence refers, in this case, to the
specimen length in the direction of the applied loads since the specimen width was rendered
infinitely long by the imposition of the periodic boundary conditions along the vertical
sides.

In the considered problem, the duration of the tertiary creep phase is very small
compared to the secondary creep phase. At rather modest stresses and large temperatures
most of the specimen lifetime is consumed by the nucleation of microcrack densities needed
to form a cluster which is large enough to start growing at a rapid rate. There is a weak
effect of size on crack nucleation (Bolotin, 1989) and this explains the fact that the time to
rupture is almost entirely size independent. It is important to note that this study considers
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Fig. 9. The size dependence of the time to failure ¢, for different values of the load parameter o.

the creep rupture of specimens which are initially not damaged. If the specimens were pre-
damaged and subjected to large tensile tractions their strength would exhibit significant
size dependence (Duxbury, 1994).

The cumulative probability distribution function of the time to failure F(z,) is deter-
mined from the simulations for different lattice sizes (Fig. 10). As expected, the scatter of
the results decreases with the increase of lattice size. It is of interest to explore if F(1) can
be cast into some of the familiar form of probability distributions. The survival probability
depends on the probability of finding a large crack in the specimen. Moreover, the size of
the stress induced defects is distributed according to Weibull’s law (Curtin and Scher, 1992).
Since lattice rupture depends on the largest defect it seems reasonable to assume that the
cumulative probability of the time to creep rupture can be written in the form of the Weibull

distribution
Fu)=1- exp|:— (%) J (20)

as anticipated by Bolotin (1989). The Weibull probability plots for different sizes of speci-
men A (and fixed load parameter « = 0.01) and different applied stresses (and fixed lattice
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Fig. 10. The cumulative probability distributions of time to failure for different lattice sizes and
x=0.01.

size A = 16) are displayed in Fig. 11. The justification for the Weibull's distribution of
defects is supported by the linearity of the graphs in Fig. 11. The shape factor m = m(4) is
very weakly size dependent while the scale factor * = r*(®) is a function of the applied
tensile stresses.

4. MEAN FIELD MODEL

The stiffness of a specimen subjected to creep deformation is, at least initially, domi-
nated by the nucleation of microcracks. During this early phase the damage is randomly
distributed over the entire specimen volume. The overall response is of the mean field type.

The mean field models (Nemat-Nasser and Hori, 1993) are based on the assumption
that each defect is subjected to an equal strain computed from the applied stresses and the
effective stiffness. Hence, the exact position of each defect is irrelevant and the direct
interaction of adjacent defects is neglected. The mean field and effective continua models
are supposed to be valid at modest densities of uniformly distributed defects, i.e. when the
specimen is statistically homogeneous. Since the mean field models lead to simple estimates
of macro parameters, it is of obvious interest to ascertain the accuracy of these estimates.

The parallel bar model (Krajcinovic et al., 1993) represents a discrete analog of the
first order mean field models. In the loose bundle parallel bar approximation a specimen
subjected to uniaxial tension is modeled by an ensemble of N links. All links are assumed
to have equal stiffness & = C,/N (where C, is the stiffness of the pristine specimen) and
equal strength. The system is at each end provided by a rigid busbar which can move only
in the direction of the applied force F = const. (Fig. 12.a). Consequently, all extant links
equally share in supporting the externally applied force and are subject to the identical
clongation u(N,, 1) (where N, = N—n is the number of extant links and » the number of
ruptured links). The force carried by a link is
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i =

where, from (9)

F

F

N—n(t) _ N.(t)  N[-D()]

n(1)

D)=+ =

is the damage parameter (Krajcinovic and Silva, 1982, Krajcinovic et al., 1993).

The system elongation is

N

N=N®) _

N

Nt)
N

@

(22)



Creep rupture of polymers 1119
LSS LSS LS L

| | | ! ! l
4]
] 2000 4000 6000 8000 10000 12000
time (hrs)

Fig. 12. (a) The parallel bar model ; (b) evolution of creep strain with time.

F _F _F
“0 = = Nk = CI—DWN”

(23)

All extant links have an identical probability of rupture since they carry equal force f (21).
The rate of link ruptures is, therefore,

ool B A2

where u, = F/C, is the elongation of the pristine system. The rate at which the link ruptures
must be directly proportional to the number of surviving links and the rate of link ruptures.
Moreover, in the mean field approximation this proportionality must be linear. Hence,
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— = —RN. (25)

The differential equation

Uy Uy (1 Y] dD
= _= - g —] |— 2
& toexP(k,,T>eXp[ ka°‘(1~0> ]1—0 (26)

can be readily derived by combining expressions (24) and (25). Subject to initial
D(t = 0) = 0 and terminal condition D(z = 1) = D,, the nonliner differential eqn (26) can
be integrated as follows

Up \ [P U, 1 V] dD
ly =1y €Xp k,,iT expl — ﬁd m ITD' 27
0 b

The integral in (27) can be written in the form of exponential integral functions

1 (aU, alo/ 1 V2 U,
o=o{e(r) [ krli ) Peeolier) @

the strain vs time curves for the parallel bar model exhibit the trends typical of creep
deformation (Fig. 12.b). The dependence of the time to creep rupture (28) on the load
parameter « is displayed in the graphs plotted in Fig. 12.b.

The difference between the parallel bar model and lattice models is that the former
neglects the spatial correlations of defects. The spatial correlations is reflected in the
topology of the system and the stress concentrations. For example, the fraction of ruptured
links at system failure "™ = 1 for the parallel bar model and only ¢’ = 0.35 for the lattice
model. Furthermore, the effect of stress concentration increases with the increase of damage
and leads to an increase of strain rates in the tertiary creep phase. Both effects tend to
decrease the duration of the second and third phase. Consequently, the mean field estimates
of the time to creep rupture are upper bounds on the exact solution.

The difference in topology at the time of failure can be corrected by setting D, = 0.35.
In that case, the discrepancy in the time to creep rupture: 7"/t ~ 1.4, 3.7 and 7.8 for
o = 0.001, 0.01 and 0.03, respectively, must be attributed to the spatial correlations. The
mean field estimate becomes progressively worse as the stresses (and stress concentrations)
are increased. Thus, even though the type of response is qualitatively similar, the mean field
models are inherently incapable of a rigorous estimate of failure thresholds.

5. SUMMARY AND CONCLUSIONS

The proposed model for the creep deformation and failure of thermoset resins is based
on the following hypotheses: (a) the macro response of the specimen is related to the
morphology of the network formed by molecular chains, (b) the rupture of the molecular
chains is a random process which is activated by the temperature and the applied stress,
and (c¢) the damage evolution is an “annealing” process during which the state can be
changed by the mobility of thermally stimulated conformation changes of molecular chains.

The macro response in the secondary creep phase is attributed to the thermally acti-
vated nucleation of defects formed by ruptured bonds. Local stress concentrations become
the primary cause of the damage evolution dominated by the growth of the existing micro-
cracks (tertiary creep) at larger damage accumulations and larger defects. The specimen
ruptures either due to the cooperative phenomena (direct interaction of closely spaced
defects) at modest stress levels or by an unstable propagation of a single macrocrack (brittle
failure) at larger stress levels.
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The effect of the ruptured bonds on the lattice response in the axial direction can be
measured either by the fraction of ruptured diagonals or by the change in the lattice
stiffness. The second alternative is strongly preferred since the stiffness can be readily
measured on the macro scale and is not size dependent. The size dependence of the response
was found to be limited to very small specimens. This conclusion is supported by the test
data of Regel’ et al., (1974).

The final task focused on the examination of the accuracy of the effective medium
estimates of the time to creep rupture, i.e., the effect of the stress concentrations on the
failure threshold. The effective medium estimates of the time to rupture was found to be a
rather poor upper bound of the exact solution. The poor accuracy of the mean field
estimates of the time to creep rupture are attributed to: (a) the assumption that all links
must be ruptured prior to the loss of stiffness, and (b) the neglect of the stress concentrations.

The lattice is an exact model of the geometry of resin microstructure which is entirely
consistent with its nodular texture (Mijovic and Tsay, 1981, Krajcinovic and Mallick, 1994,
1995). The relative lack of sensitivity to the specimen sizes above 1-2 mm renders this
model very appealing for both qualitative and quantitative analyses. Quantitative analysis
would require generalization to three dimensions and a detailed study of crosslinking
needed for better estimates of the activation energy and link stiffnesses for a given resin.
The existence of rather simple analytical estimates, based on the physics of the deformation,
is a testimony to the fact that a micromechanical model may often lead to a simpler solution
than an empirical or phenomenological artifice.

The simulations reported in this study appear to be similar to those described by
Termonia and his collaborators who considered the effect of the molecular weight, strain
rate and temperature on strength of polymer fibers formed by an ensemble of fully extended
molecular chains. The purely geometrical difference (triangular vs square lattice), dictated
by the microstructure itself, was not a reason for this study. The objectives, approach and
accomplishments of this study are not identical to those of the studies of Termonia ef al.
The objective of this study was to provide a simple but accurate one parameter analytical
model for the creep and creep rupture of a resin specimen subjected to high temperature
and relatively modest tensile stresses. This objective was successfully met by determining
the only size-independent measure of damage (effective stiffness) which is easily identifiable
and measurable in tests. It was also shown that the model can be then formulated in terms
of a single parameter (time to rupture). The statistics of this parameter is found to follow
the Weibul! distribution. Moreover, it was demonstrated that the time to rupture is also
size independent which provides the final link between the tests on small specimens and the
actual (potentially large) structure. A short discussion of the relative effects of the spatial
correlation of defects (stress concentrations) and the topology at failure demonstrates the
reason for the failure of effective-medium models which are commonly used in analysis and
high temperature design. In summary, it seems that the formulated model provides a
foundation for the formulation of a rational design model for the creep failure of resin
specimens which can be verified by few simple tests.
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